

2011 Marking Scheme

Grade Awarded	Mark Required (/ ₁₀₀)	% candidates achieving grade
A	69+	28.7%
В	56+	23.6%
С	43+	24.4%
D	36+	10.1%
No award	<36	13.2%

Section:	Multiple Choice		Extended Answer	
Average Mark:	25.4	/40	31.4	/60

	2011 Higher Chemistry Marking Scheme				
MC Qu	Answer	% Pupils Correct	Reasoning		
1	D	86	 A Bromine has the formula Br2 and has diatomic molecules B Methane has the formula CH4 and has pentatomic molecules C Hydrogen has the formula H2 and has diatomic molecules D Helium is monatomic as it is a Noble Gas in group 0 and has the formula He 		
2	A	56	 ☑A Isotopes have same number of electrons so have same electron arrangement ☑B Isotopes have different numbers of neutrons ∴ have different nuclei ☑C Isotopes have different numbers of neutrons ☑D Isotopes have different numbers of neutrons ∴ have different mass numbers 		
3	A	62	 A No precipitate: copper (II) sulphate and lithium chloride are both soluble B Insoluble zinc carbonate precipitate formed C Insoluble silver nitrate precipitate formed D Insoluble magnesium phosphate precipitate formed 		
4	D	44	CarbohydrateGlucoseFructoseMaltoseSucroseStarchFormulaC_6H_{12}O_6C_6H_{12}O_6C_{12}H_{22}O_{11}(C_6H_{10}O_5)_nReaction with Benedict'sTurns brick redTurns brick redTurns brick redNo reaction		
5	В	77	Image: A 1mol F2 = 38g \therefore no. of mol = $\frac{mass}{gfm} = \frac{100}{_{38}} = 2.63 mol \therefore$ least molecules Image: B 1mol H2 = 2g \therefore no. of mol = $\frac{mass}{gfm} = \frac{100g}{_2} = 50.0 mol \therefore$ most molecules Image: C 1mol N2 = 28g \therefore no. of mol = $\frac{mass}{gfm} = \frac{100g}{_{28}} = 3.57 mol$ Image: D 1mol O2 = 32g \therefore no. of mol = $\frac{mass}{gfm} = \frac{100g}{_{32}} = 3.13 mol$		
6	D	70	 A E_a stays the same and number of successful collisions decreases at lower temperatures B Activation Energy (E_a) does not change as temperature increases C Activation Energy (E_a) does not change as temperature increases D E_a stays the same and number of successful collisions decreases at lower temperatures 		
7	В	53	Zn + 2AgNO ₃ → Zn(NO ₃) ₂ + 2Ag 1mol 2mol 2mol 2mol 0.025mol 0.05mol 0.05mol ⊠A Only 0.025mol of Zn will react with 0.05mol of silver nitrate solution ⊠B 0.05mol of silver is displaced in the reaction above ⊠C All silver nitrate solution is reacted and 0.075mol of Zn left in excess ⊠D Only 0.025mol of the 1mol of Zn reacts with 0.05mol of silver nitrate solution		
8	С	52	Example 2 Single 2 intervence of 2 intervence of 2 intervence of an are solution Example 2 Single 2 intervence of 2 intervence of 2 intervence of an are solution Example 2 Single 2 intervence of 2 interv		
9	С	62	 ΔH for forward reaction= 130-210kJ mol⁻¹ = -80kJ mol⁻¹ E_a forward reaction (catalysed) = E_a reverse reaction (catalysed) + ΔH (forward reaction) = 180 - 80 kJ mol⁻¹ = 100kJ mol⁻¹ 		
10	A	72	 A enthalpy of combustion is the energy released from the complete combustion of 1 mol B ethanoic acid CH₃COOH is not a product of complete combustion C ethanoic acid CH₃COOH is not a product of complete combustion C arbon monoxide formed but complete combustion required for enthalpy of combustion 		
11	C	87	 A potassium atom is larger than sodium atom as K has more occupied electron shells B potassium atom is larger than sodium atom as K has more occupied electron shells C potassium atom is larger than sodium atom as K has more occupied electron shells D potassium atom is larger than sodium atom as K has more occupied electron shells 		
12	С	80	Hydrogen has an electronegativity of 2.2 and will form a non-polar covalent bond with an element with the same electronegativity as itself.		

			A ionic substances conduct electricity when molten (but not when solid)				
12	٨	75	B ionic substances and polar covalent substances can both dissolve in polar solvents				
13	A	C \	🗷 C ionic, most metallic and some covalent substances are solid at room temperature				
			🗷 D ionic and covalent network substances have high boiling points				
	2	EO	$0.1 \text{mol} Cl^2 \rightarrow 0.1 \text{mol} K^+ \text{ in } K^+ Cl^2$				
14	D	80	0.1mol $CO_3^{2^-}$ \therefore 0.2mol K ⁺ in (K ⁺) ₂ $CO_3^{2^-}$ = 0.3mol of K ⁺				
			$ \mathbf{x} A \text{Imol} H_2 = 2a$: n o of mol = $\frac{\text{mass}}{\text{st}} = \frac{19}{2}$ = 0.5mol H ₂				
	4	14	$ \mathbf{x} _{B} \ln N_{2} = 28a$ $\ln n_{0} n$				
15	C	61	$\square C$ 1mol Ne = 20.2a \therefore no. of mol = mass/ _{ofm} = $\frac{20.2g}{20.2}$ = 1mol Ne \therefore most volume				
			I D 1mol Cl ₂ = 71g \therefore n o, of mol = ^{mass} / _{afm} = ^{35.5g} / ₇₁ = 0.5mol Cl ₂				
			$(_{4}H_{10}(a) + 6\frac{1}{2}O_{2}(a) \longrightarrow 4CO_{2}(a) + 5H_{2}O(a)$				
			1mol 6.5mol 4mol 5mol				
16		1 0	1vol 6.5vol 4vol 5vol				
10	U	T 2	20cm ³ 130cm ³ 80cm ³ 100cm ³				
			$(+20 \text{ cm}^3 \text{ C}_2 \text{ leftover})$ Final Valume = $80 \text{ cm}^3 \text{ C}_2 + 20 \text{ cm}^3 \text{ leftover} \Omega_2 + 100 \text{ cm}^3 \text{ H}_2 \Omega_2 = 200 \text{ cm}^3$				
			That volume - soch $CO_2 + 20$ is the prevent knocking by keeping by drocarbon molecules apart				
. –	•	~ 7	X B gromatic ring structures help prevent knocking by keeping hydrocarbon molecules apart				
17	D	8/	Kic branched structures help prevent knocking by keeping hydrocarbon molecules apart				
		- •	D straight chain structures can lead to knocking as the molecules get too close together				
		1	☑A hydrogen does not produced carbon dioxide when burned ∴ no effect on alobal warmina				
10		01	■ B natural gas CH ₄ burns to form carbon dioxide ∴ contributes to global warming				
18	A	96	Image: Solution State Stat				
			ED coal burns to form carbon dioxide contributes to global warming				
			X A Possible products include: 1-chlorohexane, 2-chlorohexane and 3-chlorohexane				
10	~	11	B Possible products include: 1-chlorohex-1-ene, 2-chlorohex-1-ene, 3-chlorohex-1-ene, etc				
19	C	01	$\square C$ Whichever carbon the chlorine joins on to, it will be numbered carbon number 1				
			D Possible products include: 1-chlorocyclohexene and 3-chlorocyclohexene, 4-chlorocyclohexene				
			🗷 A Methanol contains the hydroxyl -OH group				
20	D	71	B Methanal contains the aldehyde -CHO group				
20	D		EC Methanoic Acid contains the carboxyl -COOH group				
	D Methanone does not exist as ketones have a minimum of three carbon						
			\mathbb{Z} A Pentan-2-one has the formula $C_5H_{10}O$ \therefore not an isomer of ethyl propanoate $C_5H_{10}O_2$				
21	R	50	\square B Pentanoic acid has the formula $C_5H_{10}O_2$ \therefore isomer of ethyl propanoate $C_5H_{10}O_2$				
		J7	EXIC methyl propanoate has the formula $C_4H_8O_2$ not an isomer of ethyl propanoate $C_5H_{10}O_2$				
			LXID Pentane-1,2-diol has the formula $C_5H_{12}O_2$ \therefore not an isomer of ethyl propanoate $C_5H_{10}O_2$				
22	Δ	62	Step 1 Cracking Creation of C=C double bond as molecule get (slightly) smaller				
55	Л		Step 2 Hydration Adding water across a C=C double bond				
			🗷 A propanone is a ketone and cannot not oxidised by hot copper (II) oxide				
22	(Δ7	B paraffin is an hydrocarbon and cannot oxidised by hot copper (II) oxide				
23	C		$\square C$ Propan-1-ol oxidises to form propanoic acid, which turns pH indicator red				
			D Propan-2-ol oxidises to form propanone, which does not turn pH indicator red				
			A ketones do not hydrolyse with sodium hydroxide solution				
24	R	ΔΔ	B methyl propanoate (an ester) is hydrolysed by sodium hydroxide				
L 1		ТТ	Secondary alcohols do not hydrolyse with sodium hydroxide solution				
			IMD aldenydes do not hydrolyse with sodium hydroxide solution				
			IMA algenyaes are not used as flavourings				
25	D	79	In a carboxylic acias are not used as flavourings				
	U		Let secondary alconois are not used as flavourings				
			Question Annuen				
26		57	Process X Steam Reforming Coal and natural ass turn into synthesis ass (CO+H2) by steam reforming				
20	υ	57	Substance Y Methanal Methanol is a primary alcohol and is oxidised to methanal				

27	В	49	Functional Group for Amine: $-N < H$		
28	В	55	 A -OH group at 8 o'clock in benzene is not needed for blood pressure increase B structure contains all common groups between noradrenaline and phenylephrine C no other groups beyond -NH group necessary for blood pressure increase D molecule is missing -OH group at bottom of benzene ring 		
29	D	82	NA kevlar is a very strong polymer and used in bullet-proof vests 図B biopol is a biodegradable polymer 図C poly(ethenol) is soluble in water 図D poly(vinylcarbazole) is a photoconductive polymer used in photocopiers		
30	С	65	 A Fats are triesters made when glycerol and fatty acids join together B Oils are triesters made when glycerol and fatty acids join together C Enzymes are specifically-shaped proteins which catalyse reactions in living things A Fats are triesters made when glycerol and fatty acids join together C Enzymes are specifically-shaped proteins which catalyse reactions in living things 		
31	В	89	 A Glycol is a product of the reaction (feedstocks are reactants) B Ethene and Ethanol are reactants and feedstocks in this reaction C Glycol and poly(ethene) are products of the reaction (feedstocks are reactants) D Glycol and poly(ethene) are products of the reaction (feedstocks are reactants) 		
32	D	51	Evaporation of K(s) K(s)1st Ionisation Energy K(g) 2^{nd} Ionisation Energy K*(g)Overall Reaction K*(g)K(s)K(g)K*(g)K*(g)K*(g)K*(g)88kJ mol ⁻¹ 425kJ mol ⁻¹ 3060kJ mol ⁻¹ 88+425+3060 = 3573 kJ mol ⁻¹		
33	D	40	 A ester and water (flask B) break down as reverse reaction proceeds B ester and water (flask B) break down as reverse reaction proceeds C Flask A contains both reactants and products as reaction is not 100% D Both flasks contain reactants and products as the reaction is reversible 		
34	A	48	Increased solubility of ammonia in water is caused by more forward reaction: Change to: Pressure Temperature Effect Increase in pressure favours forward Decrease in temperature favours Effect Increase in pressure favours forward Decrease in temperature favours		
35	В	64	Acid: 0.1mol l ⁻¹ acid with pH=4 \therefore weak acid (NB a strong acid at 0.1mol l ⁻¹ would have pH=1) Alkali: pH=11 \therefore [H [*]] = 10 ⁻¹¹ mol l ⁻¹ \therefore [OH ⁻]=10 ⁻³ mol l ⁻¹ (= 0.001mol l ⁻¹) \therefore strong alkali		
36	С	45	Image: A NH4Cl is acidic \therefore concentrations of $H^*(aq)$ and $OH^-(aq)$ are not equalImage: B Na2CO3 is alkaline \therefore concentrations of $H^*(aq)$ and $OH^-(aq)$ are not equalImage: D C KNO3 is neutral \therefore concentrations of $H^*(aq)$ and $OH^-(aq)$ are equalImage: D CH_3COO^-K^* is alkaline \therefore concentrations of $H^*(aq)$ and $OH^-(aq)$ are not equal		
37	С	74	Write down the main species involved in the reaction: $IO_3^ \rightarrow$ I_2 Balance all atoms except O and H: $2IO_3^ \rightarrow$ I_2 Add H ₂ O to other side to balance O atoms: $2IO_3^ \rightarrow$ $I_2 + 6H_2O$ Add H [*] ions to other side to balance H atoms: $2IO_3^- + 12H^+$ \rightarrow $I_2 + 6H_2O$ Add e ⁻ to most positive side to balance charge: $2IO_3^- + 12H^+ + 10e^ \rightarrow$ $I_2 + 6H_2O$		
38	A	56	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
39	В	54	 ☑ A equal no. of moles of each metal are produced but metals have different gfm ☑ B equal no. of moles of each metal are produced ∴ equal number of metal atoms ☑ C metals are positive ions which are deposited on the negative electrode ☑ D equal number of moles of each metal are produced 		
40	A	65	 ☑ A Alpha radiation stopped by smoke particles and long half-life for device long life ☑ B Gamma radiation would not be stopped by smoke particles and cannot be used ☑ C A short half-life would mean the smoke-detector would not work for long ☑ D Gamma radiation would not be stopped by smoke particles and cannot be used 		

2	2011 Higher Chemistry Marking Scheme					
Long Qu	Answer	Reasoning				
1a	homogeneous	Homogeneous Catalyst in <i>same</i> state as the reactants Heterogeneous Catalyst in <i>different</i> state from the reactants				
1b(i)	0.0015	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$ = $\frac{1.80 - 1.20}{400 - 0}$ = $\frac{0.6 \text{ mol } l^{-1}}{400 \text{ s}}$ = 0.0015 mol l^{-1} min ⁻¹				
1b(ii)	Line drawn showing:	Steeper gradient going down Curving off to finish at similar concentration				
2a(i)	Electrons are closer to nucleus and harder to remove	 Across a period, atoms are smaller due to increased nuclear charge Electrons harder to remove if they are closer to nucleus Increase in 1st ionisation energy 				
2a(ii)	$Cl(g) \longrightarrow Cl^+(g) + e^{-1}$	1 st Ionisation energy is the removal of 1 mole of electrons from 1 mol of atoms in the gaseous state.				
2b	Noble gas already have full outer shell	Noble gases already have full outer shell and do not have to form bonds to achieve a full outer shell. Electronegativity is a measure of the attraction for electrons so puble gases have no measurable attraction for electrons				
За	Covalent networks have high melting points	 Ionic bonding always has a high melting point but covalent bonding has two subtypes: Covalent molecular (sometimes called discrete covalent) have low melting points as there are only weak bonds between the molecules. Covalent networks have high melting points as covalent in network bonds must be broken to melt the substance 				
3b	Ionic bonding is a lattice of ions with no bonds between ions	Ionic bonding is held together due to the electrostatic attraction between positive and negative ions. The formula $MgCl_2$ is the simplest ratio of Mg^{2+} ion to Cl^- ions and does not represent $MgCl_2$ molecules within substance.				
4a	2,2,4-trimethylpentane	2,2,4-trimethylpentane Three side groups on G ₂ , C ₂ and C ₄ Three -CH ₃ methyl side groups Three -CH ₃ methyl side groups Three arbons on main chain Single Bonds on main chain				
4b	Smaller molecules used in winter	In the colder months of winter, hydrocarbons are less volatile and harder to catch fire. Smaller, more volatile hydrocarbons are added to petrol in winter to increase the volatility of the petrol.				
4c	Explanation detailing:	test tube beaker hot water				
5а	0.286g	no. of mol = $\frac{Volume}{Molar Volume}$ = $\frac{0.096 litres}{24 litres mol^{-1}}$ = 0.004mol $Ca(OCl)_2 + 2HCl \longrightarrow Ca(OH)_2 + 2Cl_2$ 1mol 0.002mol 1mol Ca(OCl)_2 = (1x40)+(2x16)+(2x35.5) = 40+32+71 = 143g mass = no. of mol x gfm = 0.002mol x 143 g mol^{-1} = 0.286g				

5b	О О-СН ₂ -С-ОН СН ₃	phenoxyethanoic acid part of the molecule is the same: 2,4-dichloro sidegroups becomes 4-chloro and 2- i.e. chlorine atom on carbon 4 is the same	O-CH2-C-OH		
	Cl	but chlorine atom on carbon 2 becomes a -CH3 methyl group.			
6a	н н онн н-с-с-с-с-н н н н н	Butan-2-ol is a secondary alcohol as it has 2 carbons directly attached There are three alcohol isomers of butan-2-ol: butan-1-ol H H H OH I - C - C - C - C - H H H H H Primary Alkanol 1 carbon directly attached to the carbon with the -OH group	to the carbon with the -OH group. 2-methylpropan-2-ol H CH3 H H C - C - C - H H OH H <u>Tertiary Alkanol</u> 3 carbons directly attached to the carbon with the -OH group		
6b	Answer to include:	Triethanol amine has 3 hydroxyl –OH groups which means the bonds to neighbouring molecules. Hydrogen bonding brings mol raises the boiling point. Triisopropylamine has a similar mass but no hydroxyl –OH grou hydrogen bonding and has a lower boiling point as the molecule	re are three sets of hydrogen ecules closer together and ups and has no sites for s are further apart naturally.		
7a	C8H9NO2	Benzene has a formula of C ₆ H ₆ but this molecule h substituted onto the ring in place of two of the hy HO-C ₆ H ₄ -NH-CO-CH ₃	as two groups /drogens: C8H9NO2		
7b	Amino Acid	Amino acids have a similar structure where each individual amino acid has a different R group. Methionine has an R group of: -CH ₂ -CH ₂ -S-CH ₃	R N-C-C H OH		
7c	0.0225	Absorbance 1.6 Absorbance 0.9 concentration 0.040g l ⁻¹ x = 0.0225 g l ⁻¹	^{0.9} / _{1.6}		
8α	Diagram showing:	$ \begin{array}{c} 0 & 0 \\ \parallel & \parallel \\ 0 - C - C_{10}H_6 - C - O - CH_2 \end{array} $	CH2		
8b	72.0%	1mol glycerol $C_3H_8O_3$ = (3x12)+(8x1)+(3x16) = 36+8+48 1mol ethane-1,2-diol $C_2H_6O_2$ = (2x12)+(6x1)+(2x16) = 24+6+32 glycerol + hydrogen ethane-1,2- 1mol 1mol 92g 62g 92kg 62kg 27.6kg 62kg %Yield = $\frac{Actual}{Theoretical} \times 100 = \frac{13.4}{18.6} \times 100 $	= 92g = 62g diol + methanol ^{1mol} x ^{27.6} / ₉₂ 6kg (theoretical) :100 = 72.0%		
9a	Answer to include:	Palm oil has more saturated fats than olive oil. Saturated fats fit together more closely due to shape. Molecules are closer together and this raises the melting point as more energy is required to separate molecules.			

9b		Saturated fatty acid Monounsaturated Fatty Acid Diunsaturated Fatty Acid				
	polyunsaturated	$\begin{array}{c c} C_nH_{2n+1}COOH & C_nH_{2n-1}COOH & C_nH_{2n-3}COOH \\ Tf n=17; C_{17}H_{22}COOH & Tf n=17; C_{17}H_{22}COOH & Tf n=17; C_{17}H_{22}COOH \\ \end{array}$				
		IT h=17: C17H35COOH IT h=17: C17H33COOH IT h=17: C17H31COOH				
9c	Soap	Fatty acids can be neutralised by sodium hydroxide to form soap				
10a(i)	O ₃ + 2KI + H ₂ O	ozone + potassium + water → iodine + oxygen + potassium iodide + water → iodine + oxygen + hydroxide				
100(1)	↓ I₂ + O₂ + 2KOH	O_3 + 2KI + H ₂ O \rightarrow I ₂ + O ₂ + 2KOH				
10	paper turns	Iodine produced in reaction turns blue/black when starch in the paper is				
1Uα(ii)	blue/black	present.				
10Ь	sulphuric acid • • • • • • • • • • • • • • • • • • •	Oxygen gas and ozone gas are produced at positive electrode as both ion- electron equations are oxidation reactions and give electrons to the positive electrode.				
1000	Acidified	Oxidising Agent Acidified Benedict's/Fehling's Hot Tollen's Reagent				
100(1)	dichromate solution	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
10c(ii)	diagram of 3-methylhex-3-ene H CH ₃ H ₅ C ₂ C ₂ H ₅	$H \xrightarrow{C=C} CH_3 \xrightarrow{H} C=O + O=C \xrightarrow{CH_3} H_5C_2 \xrightarrow{C=O} + O=C \xrightarrow{C_2H_5} H_5C_2 \xrightarrow{propanal} butan-2-one} CH_3$				
11a	acid which partially dissociates	Strong AcidAcid which fully dissociated into ionse.g. hydrochloric acidWeak AcidAcid which partially dissociated into ionse.g. ethanoic acid				
11b(i)	HCl is strong acid with full dissociation of H ⁺ ions to react with Mg	Hydrochloric acid is a strong acid and is fully dissociated. It has all its H ⁺ ions available to react with magnesium immediately. Sulphurous acid is a weak acid and it has less H ⁺ ions available to react with Magnesium at any particular time but equilibrium will replace those H ⁺ ions that are removed.				
11b(ii)	Sulphurous acid releases two H ⁺ ions per molecule while HCl releases one H ⁺	Sulphurous acid H ₂ SO ₃ is a weak acid with 2H ⁺ ions potentially released per molecule. Only a small proportion of H ⁺ ions dissociate at any one time but as the H ⁺ ions are removed by neutralisation, equilibrium shifts to replace the H ⁺ ions. Ultimately, only 10cm ³ of sulphurous acid is required due to the double quantity of H ⁺ ions released compared to HCl.				
11b(iii)	13	$[OH^{-}] = 0.1 \text{ mol } l^{-1} = 10^{-1} \text{ mol } l^{-1}$ $[H^{+}] = \frac{10^{-14}}{[OH^{-}]} = \frac{10^{-14}}{10^{-1}} = 10^{-13} \text{ mol } l^{-1}$ $[H^{+}] = 10^{-13} \text{ mol } l^{-1} \therefore \text{ pH} = 13$				

12a	Proton:neutron	There is a zone of stability in the proton:neutron ratio. Atoms which are			
	ratio is too high/low	outwith this zone are unstable and can breakdown by radioactive decay.			
12b	Answer to include:	131_{53} I $\rightarrow 131_{54}$ Xe + 0_{-1} e			
12c(i)	8 days	mass of iodine = 100pg time = 0 days			
		From graph: 4 days = $70p_0$ ¹³¹ I = $70 \times 10^{-12} g$ ¹³¹ I			
		$1 \text{mol}^{131}\text{I} = 131\text{g} = 6.02 \times 10^{23} \text{ ions}$			
12c(ii)	3.22×10 ¹¹	70×10^{-12} = 6.02 × 10 ²³ ions × $\frac{70 \times 10^{-12}}{10^{-12}}$			
		131			
		$= 3.22 \times 10^{11} \text{ ions}$			
		OH ⁺ ions in sodium hydroxide neutralise reactant H ⁺ ions to form water • Peactant H ⁺ ions removed			
13a	Answer to include:	 Equilibrium shifts to LEFT to replace reactant H⁺ 			
		 More yellow colour and less orange colour due to equilibrium shift 			
		Add some deionised water from wash bottle to dissolve iron (II) sulphate			
126		 Rinse stirring roa with deionised water Dissolved solution is transferred into standard flask through funnel 			
13D(i)	Answer to include:	Beaker and funnel are rinsed in deionised water to ensure full transfer of solution Flack is made up to the mark on the standard flack			
		 bottom of meniscus on line in flask 			
		n o. of mol Fe ²⁺ = volume x concentration = 0.0274 litres x 0.02 mol t^4 = 5.48×10^{-4} mol			
		$3Fe^{2+} + CrO_4^{2-} + 8H^+ \longrightarrow 3Fe^{3+} + Cr^{3+} + 4H_2O$			
13b(ii)	3.65x10 ⁻³	3mol 1mol 5.48×10 ⁻⁴ mol 1.83×10 ⁻⁴ mol			
		n _o , of mol 1.83×10^{-4} mol 1.23×10^{-4}			
		concentration = volume = 0.05 litres = 3.65×10 ⁻⁵ mol (²			
	-2660 to -2673	Alkanol Methanol Ethanol Propan-1-ol Butan-1-ol Enthelpy of Computing727kT mol ⁻¹ 1367 kT mol ⁻¹ 2020 kT mol ⁻¹			
14a		Difference 640 653 (640-653)			
		Prediction - - - - - - 2660 to -2673			
		$\Delta H = cm\Delta T = 4.18 \times 0.2 \times 40 = 33.44 \text{ kJ}$			
1.41	2474 (1g ←→ 33.44kJ			
14b	-2474.6	$1g 4 33.44 kJ$ $74g 4 33.44 kJ \times 74/_1$			
14b	-2474.6	$1g 4 \rightarrow 33.44 \text{kJ}$ $74g 4 \rightarrow 33.44 \text{kJ} \times ^{74}/_1$ $= 2474.6 \text{kJ} \text{ mol}^{-1}$ Furthermin = 2474.6 (kJ mol^{-1})			
14b	-2474.6	$1g 33.44 \text{kJ} \\ 74g 33.44 \text{kJ} \times ^{74}/_1 \\ = 2474.6 \text{kJ mol}^{-1} \\ \text{Exothermic} = -2474.6 \text{kJ mol}^{-1} \\ \hline \bullet = 6 \text{c} + 6 \text{kJ} + 2 \text{c} +$			
14b	-2474.6	1g ← 33.44kJ 74g ← 33.44kJ × ⁷⁴ / ₁ = 2474.6kJ mol ⁻¹ Exothermic ∴ = -2474.6kJ mol ⁻¹ 0 5C + 6H ₂ + $\frac{1}{2}O_2 \rightarrow C_5H_{11}OH$ ΔH= -354 kJ 0 C + O ₂ → CO ₂			
14b	-2474.6	$1g 33.44 \text{kJ}$ $74g 33.44 \text{kJ} \times ^{74}/_1$ $= 2474.6 \text{kJ mol}^{-1}$ Exothermic $\therefore = -2474.6 \text{kJ mol}^{-1}$ $5C + 6H_2 + \frac{1}{2}O_2 \rightarrow C_5H_{11}OH \qquad \Delta H = -354 \text{ kJ}$ $C + O_2 \rightarrow CO_2 \qquad \Delta H = -394 \text{ kJ}$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O \qquad \Delta H = -286 \text{ kJ}$			
14b	-2474.6	$1g 33.44 \text{kJ} \\ 74g 33.44 \text{kJ} \times ^{74}/_{1} \\ = 2474.6 \text{kJ mol}^{-1} \\ \hline \text{Exothermic} = -2474.6 \text{kJ mol}^{-1} \\ \bullet 5C + 6H_2 + \frac{1}{2}O_2 \rightarrow C_5H_{11}OH \qquad \Delta H= -354 \text{ kJ} \\ \bullet C + O_2 \rightarrow CO_2 \qquad \Delta H= -394 \text{ kJ} \\ \bullet H_2 + \frac{1}{2}O_2 \rightarrow H_2O \qquad \Delta H= -286 \text{ kJ} \\ \hline \end{array}$			
14b 14c	-2474.6 -3332	$1g \longleftrightarrow 33.44 \text{kJ}$ $74g \longleftrightarrow 33.44 \text{kJ} \times ^{74}/_{1}$ $= 2474.6 \text{kJ mol}^{-1}$ Exothermic $\therefore = -2474.6 \text{kJ mol}^{-1}$ $5C + 6H_{2} + \frac{1}{2}O_{2} \rightarrow C_{5}H_{11}OH \qquad \Delta H = -354 \text{ kJ}$ $C + O_{2} \rightarrow CO_{2} \qquad \Delta H = -394 \text{ kJ}$ $H_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O \qquad \Delta H = -286 \text{ kJ}$ $x - 1 \qquad C_{5}H_{11}OH \rightarrow 5C + 6H_{2} + \frac{1}{2}O_{2} \qquad \Delta H = +354 \text{ kJ}$			
14b 14c	-2474.6 -3332	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
14b 14c	-2474.6 -3332	$\begin{array}{c} 1g & \longrightarrow 33.44 \text{kJ} \\ 74g & \longrightarrow 33.44 \text{kJ} \times ^{74}/_{1} \\ &= 2474.6 \text{kJ mol}^{-1} \\ \hline \text{Exothermic} \therefore = -2474.6 \text{kJ mol}^{-1} \\ \hline \text{Exothermic} \therefore = -2474.6 \text{kJ mol}^{-1} \\ \hline \text{O} & 5C + 6H_{2} + \frac{1}{2}O_{2} \rightarrow C_{5}H_{11}OH & \Delta H= -354 \text{ kJ} \\ \hline \text{O} & C + O_{2} \rightarrow CO_{2} & \Delta H= -394 \text{ kJ} \\ \hline \text{O} & H_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O & \Delta H= -286 \text{ kJ} \\ \hline \text{O} & \text{L}_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O & \Delta H= -286 \text{ kJ} \\ \hline \text{O} & \text{L}_{2} + \frac{1}{2}O_{2} \rightarrow 5CO_{2} & \Delta H= +354 \text{ kJ} \\ \hline \text{O} & \text{L}_{2} + 3O_{2} \rightarrow 5CO_{2} & \Delta H= -1970 \text{ kJ} \\ \hline \text{O} & \text{L}_{2} + 3O_{2} \rightarrow 6H_{2}O & \Delta H= -1716 \text{ kJ} \end{array}$			
14b 14c	-2474.6 -3332	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
14b 14c 15a	-2474.6 -3332 Precipitation	1g ↔ 33.44kJ 74g ↔ 33.44kJ × ⁷⁴ / ₁ = 2474.6kJ mol ⁻¹ Exothermic ∴ = -2474.6kJ mol ⁻¹ • 5C + 6H ₂ + $\frac{1}{2}O_2 \rightarrow C_5H_{11}OH$ ΔH= -354 kJ • C + O ₂ → CO ₂ ΔH= -394 kJ • H ₂ + $\frac{1}{2}O_2 \rightarrow H_2O$ ΔH= -286 kJ • X-1 C ₅ H ₁₁ OH → 5C + 6H ₂ + $\frac{1}{2}O_2$ ΔH= +354 kJ • x5 5C + 5O ₂ → 5CO ₂ ΔH= -1970 kJ • x6 6H ₂ + 3O ₂ → 6H ₂ O ΔH= -1716 kJ add C ₅ H ₁₁ OH + 7 $\frac{1}{2}O_2 \rightarrow 5CO_2 + 6H_2O$ ΔH= -3332 kJ Chemical reactions where solids are formed from solutions are called precipitation Precipitates are removed by filtration			
14b 14c 15a	-2474.6 -3332 Precipitation	$1g \longrightarrow 33.44 \text{kJ}$ $74g \longrightarrow 33.44 \text{kJ} \times ^{74}/_1$ $= 2474.6 \text{kJ mol}^{-1}$ $Exothermic \therefore = -2474.6 \text{kJ mol}^{-1}$ $0 5C + 6H_2 + \frac{1}{2}O_2 \rightarrow C_5H_{11}OH \qquad \Delta H = -354 \text{ kJ}$ $0 C + O_2 \rightarrow CO_2 \qquad \Delta H = -394 \text{ kJ}$ $0 H_2 + \frac{1}{2}O_2 \rightarrow H_2O \qquad \Delta H = -286 \text{ kJ}$ $0 \times -1 C_5H_{11}OH \rightarrow 5C + 6H_2 + \frac{1}{2}O_2 \Delta H = +354 \text{ kJ}$ $0 \times 5 5C + 5O_2 \rightarrow 5CO_2 \qquad \Delta H = -1970 \text{ kJ}$ $0 \times 6 6H_2 + 3O_2 \rightarrow 6H_2O \qquad \Delta H = -1716 \text{ kJ}$ $0 AH = -3332 \text{ kJ}$ $1 AH = -3332 \text{ kJ}$ $2C_2(OH)_{2}(x) \rightarrow x = x = 1000 \text{ kJ}$			
14b 14c 15a 15b	-2474.6 -3332 Precipitation Water	$\begin{array}{cccc} 1g & & & & & & & & & & & & & & & & & & $			
14b 14c 15a 15b	-2474.6 -3332 Precipitation Water Chlorine is recycled	$1g \longrightarrow 33.44 kJ$ $74g \longrightarrow 33.44 kJ \times ^{74}/_{1}$ $= 2474.6 kJ mol^{-1}$ Exothermic ∴ = -2474.6 kJ mol^{-1} $Exothermic ∴ = -2474.6 kJ mol^{-1}$ $0 5C + 6H_{2} + \frac{1}{2}O_{2} \rightarrow C_{5}H_{11}OH \qquad \Delta H = -354 kJ$ $0 C + O_{2} \rightarrow CO_{2} \qquad \Delta H = -394 kJ$ $0 H_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O \qquad \Delta H = -286 kJ$ $0 \times -1 \qquad C_{5}H_{11}OH \rightarrow 5C + 6H_{2} + \frac{1}{2}O_{2} \qquad \Delta H = +354 kJ$ $0 \times 5 \qquad 5C + 5O_{2} \rightarrow 5CO_{2} \qquad \Delta H = -1970 kJ$ $0 \times 6 \qquad 6H_{2} + 3O_{2} \rightarrow 6H_{2}O \qquad \Delta H = -1716 kJ$ $add C_{5}H_{11}OH + 7\frac{1}{2}O_{2} \rightarrow 5CO_{2} + 6H_{2}O \qquad \Delta H = -3332 kJ$ Chemical reactions where solids are formed from solutions are called precipitation. Precipitates are removed by filtration. $2Ce(OH)_{3}(s) \rightarrow Ce_{2}O_{3}(s) + 3H_{2}O \xrightarrow{water}$ Chlorine is produced at positive electrode by electrolysis. It can be used in			
14b 14c 15a 15b 15c(i)	-2474.6 -3332 Precipitation Water Chlorine is recycled at chlorination step	$1g \longrightarrow 33.44 \text{kJ}$ 74g → 33.44 \text{kJ} × ⁷⁴ / ₁ = 2474.6 \text{kJ mol}^{-1} Exothermic ∴ = -2474.6 \text{kJ mol}^{-1} © 5C + 6H ₂ + $\frac{1}{2}O_2 \rightarrow C_5H_{11}OH$ ΔH= -354 kJ © C + O ₂ → CO ₂ ΔH= -394 kJ © H ₂ + $\frac{1}{2}O_2 \rightarrow H_2O$ ΔH= -286 kJ © x-1 C ₅ H ₁₁ OH → 5C + 6H ₂ + $\frac{1}{2}O_2$ ΔH= +354 kJ © x5 5C + 5O ₂ → 5CO ₂ ΔH= -1970 kJ © x6 6H ₂ + 3O ₂ → 6H ₂ O ΔH= -1716 kJ add C ₅ H ₁₁ OH + 7 $\frac{1}{2}O_2$ → 5CO ₂ + 6H ₂ O ΔH= -3332 kJ Chemical reactions where solids are formed from solutions are called precipitation. Precipitates are removed by filtration. 2Ce(OH) ₃ (s) → Ce ₂ O ₃ (s) + 3H ₂ O water Chlorine is produced at positive electrode by electrolysis. It can be used in the chlorination step when Ce ₂ O ₃ → CeCl ₃ .			

	Q = I x t = 4000 x (10x60) = 2 400 000 C			
			Ce ³⁺ + 3e⁻ → (Ce
15c(ii)	1.16kg		^{3mol} 3×96500C 1 =289500C 1	^{1mol} 40.1g .40.1g
			2400000 <i>C</i> 1	40.1g x ²⁴⁰⁰⁰⁰⁰ / ₂₈₉₅₀₀ = 1161.5g = 1.16kg
	3	Formula	Ionic formula	No of ions
16a		Na2504	(Na ⁺) ₂ SO ₄ ²⁻	2×Na ⁺ 1×SO4 ²⁻ i = 3
		Formula	Ionic formula	No of ions
16b	0.204°C	(NH ₄) ₃ PO ₄	(NH4 ⁺) ₃ PO4 ³	- 3xNH4 ⁺ 1xPO4 ³⁻ i = 4
		ΔT_b :	= 0.51 x c 0.51 x 0.1 0.204°C	x i x 4